

Semester:	incr.	<u>, , , , , , , , , , , , , , , , , , , </u>	number of LCID.	
Jennester.		Spring		English
octurorly	·	Shing	Language.	
Lecturer(s				
• [Dr. Cesar Gutier	rez Vaquero (<u>cesa</u>	rgv@uva.es)	
_earning g	goals: d of this course	the student shou	ld be able to:	
• A	Apply mathema	tical theories and	tools to translate some real-w	vorld phenomena into a proper
S	cientific frame	work.		
• E	Build, analyse, e Apply appropria	valuate, improve, te numerical meth	and use basic mathematical r	nodels. ical models
• II	nterpret the res	sults of modelling.		
• (Communicate th	ne entire modelling	g process.	
Contents:				
1. A	A quick look.			
E	Examples from	proportionality and	d geometric similarity.	
2. N	Modeling change.			
[Difference equations and systems of difference equations.			
3. E	Experimental models.			
F	Fitting, smoothing, regression models and variance analysis.			
4. S	Simulation modelling.			
Μ	Monte Carlo simulation. Applications to calculus and queuing models.			
5. C	Optimization models.			
Μ	Modelling using linear, nonlinear and multiobjective programming.			
6. C	Dynamic models	5.		-
7. C	, Differential equa	ations and system	s of differential equations.	
		<u>,</u> -		
Prerequises Although basics of I	<mark>ites:</mark> the necessary r Linear Algebra a	nathematical and and Calculus are re	scientific background will be o ecommended.	developed as needed, the