

Teletraffic and Quality of Service (TTQoS)			
Code number:	75099	Number of ECTS:	6 ECTS
Semester:	Autumn	Language:	English
Lecturer(s) and contact:			
 Dr. Juan Ignacio Asensio Pérez (juaase@tel uva es) 			
Dr. Ioannis Dimitriadis (<u>yannis@tel.uva.es</u>)			
Learning goals:			
At the end of the course, the student must be able to:			
• Know, understand and apply basic quantitative techniques involved in the planning,			
dimensioning and analysis of telematics networks and services.			
Understand the trade-offs involved in the design of protocols and architectures for telematics			
networks.			
Contents			
TOPIC 1: Introduction to Teletraffic Engineering			
1.1 Objectives			
1.2 Motivation: an illustrative case			
1.3 What is Teletraffic Engineering?			
1.4 A brief history of Teletraffic Engineering			
1.5 Basic concepts			
1.6 Teletraffic Engineering techniques: Queuing Theory and Simulation			
1.7 Summary			
TOPIC 2: Introduction to Queuing Theory			
2.1 Objectives, motivation, brief history			
2.2 Defining and modelling queuing systems. Basic parameters			
2.3 Little Formula			
2.4 Poisson Processes. Definition and properties			
2.5 Birth-Death Processes. Definition and properties. Relationship with Poisson processes and			
queuing systems.			
2.6 Summary			
TOPIC 3: Traffic models			
3.1 Objectives			
3.2 Kendall Notation			
3.3 Models: M/M/1, M/M/m, M/M/m/m, M/M/m/N, M/M/m/k, M/G/1			
3.4 Summary			
IOPIC 4: Queuing networks			
4.1 Objectives			
4.2 Queuing networks: definition and typology			
4.4 Burke and Jackson theorems			
4 5 Summary			
TOPIC 5: Introduction to data network simulation			
5.1 Objectives			
5.2 What does simulating consist of? Alternatives. Comparison			
5.3 Simulation models			
5.4 Types of simulations. Examples			
5.5 Introduction to the ns-3 simulator			

Ingenieros de Telecomunicación

5.6 Summary

TOPIC 6: Simulation and estimation. Comparison with Queuing Theory 6.1 Objectives 6.2 Goals and techniques for inferential statistics 6.3 Estimating the mean. Confidence Intervals 6.4 Queuing Theory and Simulation 6.5 Summary LAB ASSIGNMENT 1: Introduction to the ns-3 data network simulator LAB ASSIGNMENT 2: Queuing Theory and simulation with ns-3 **TOPIC 7: Quality of Service in TCP/IP Networks** 7.1 Objectives 7.2 Basic concepts about Quality of Service 7.3 Evolution of Quality of Service solutions (PSTN, ATM, FR, IEEE 802, IntServ, DiffServ, Transport/Application) 7.4 Traffic Management (classification, tagging, shaping, policy, queue management, scheduling), QoS routing, Traffic Engineering (IP-TE, MPLS-TE, Planning) 7.5 Challenges for current approaches to QoS provision: business models, network neutrality, QoS and regulation

LAB ASSIGNMENT 3: Quality of Service in TCP/IP networks: the case of DiffServ.

Prerequisites:

None